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Abstract. The purpose of this paper is to study the problem of asymptotic sta-
bilization in probability of nonlinear stochastic differential systems with unknown
parameters. With this aim, we introduce the concept of an adaptive control Lyapunov
function for stochastic systems and we use the stochastic version of Artstein’s the-
orem to design an adaptive stabilizer. In this framework the problem of adaptive
stabilization of a nonlinear stochastic system is reduced to the problem of asymp-
totic stabilization in probability of a modified system. The design of an adaptive
control Lyapunov function is illustrated by the example of adaptively quadratically
stabilizable in probability stochastic differential systems.
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Introduction

The aim of this paper is to study the problem of asymptotic feedback stabilization
in probability of nonlinear stochastic differential systems with an unknown constant
parameter in the drift. Since in general this problem is not solvable by means of static
feedback laws we introduce the concept of an adaptive control Lyapunov function and we
use the stochastic version of Artstein’s theorem established in [2] to design an adaptive
stabilizer. In our framework the problem of adaptive stabilization of nonlinear stochastic
differential systems is reduced to the problem of dynamic feedback stabilization, for all
values of the unknown parameter, of a modified system.

The concept of a control Lyapunov function for stochastic differential systems has
been introduced in [2] in order to prove a stochastic version of Artstein’s theorem [1]
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(see also [9]). The asymptotic stability in probability of affine in the control nonlinear
stochastic differential systems which can be characterized in terms of computable control
Lyapunov functions which depend on the system coefficients has been studied in [4].

In [3] necessary and sufficient conditions for asymptotic feedback stability of
stochastic differential systems are of Lyapunov-type. The stabilizers computed in this
paper are smooth except possibly at their equilibrium state and their construction is based
on the knowledge of a control Lyapunov function.

The concept of an adaptive control Lyapunov function associated with deterministic
nonlinear systems with unknown parameters has been introduced by &nsitiKoko-
tovi€ in [7]. In this paper we extend to nonlinear stochastic differential systems with
unknown parameters the results proved for deterministic systems in [7]. The main tools
used in the following are the stochastic Lyapunov machinery developed by Khasminskii
[5] and the stochastic Artstein theorem established in [2].

This paper is divided into five sections organized as follows. In Section 1 we recall
some definitions and results concerning the asymptotic stability in probability of the
equilibrium solution of a stochastic differential equation proved by Khasminskii [5] and
we recall the stochastic version of Artstein’s theorem proved in [2]. In Section 2 we
introduce the class of stochastic differential systems with unknown constant parameters
we are dealing with in this paper. In Section 3 we state and prove the main result of
the paper on the feedback stabilization of the class of stochastic differential systems
introduced in the previous section. In Section 4 we illustrate the construction of an
adaptive control Lyapunov function by proving a backstepping lemma and in Section 5
we design an example deduced from the “benchmark” model exposed in [6].

1. Stochastic Stability

The purpose of this section is to recall the main results concerning the asymptotic stability
in probability of the equilibrium solution of a stochastic differential equation that we need
in what follows as well as the stochastic version of Artstein’s theorem. For a complete
presentation of stochastic stability theory and stochastic Lyapunov machinery we refer
the reader to the book by Khasminskii [5], for example.

1.1. Asymptotic Stability in Probability

Let(R2, F, P) be acomplete probability space and denoteby {w;; t > 0} astandard
R™M-valued Wiener process defined on this space.

Consider the stochastic process solutipi R" of the stochastic differential equa-
tion written in the sense ofdt”

t t
Xt = Xo +/ f(Xs) dS+/ 0(Xs) dws, 1
0 0

where

1. X is given inR",
2. f andg are functionals mapping" into R" andR"*™, respectively, vanishing
in the origin, and such that there exists a nonnegative conktauich that, for



Adaptive Stabilization of Nonlinear Stochastic Systems 111

anyx € R",
[FOOI+ 19| < K@+ [X]).

If, for anys > 0 andx € R", x>*, t > s, denotes the solution at tintef the stochastic
differential equation (1) starting from the stateat times, the notion of asymptotic
stability in probability for the equilibrium solution of the stochastic differential equation
(1) can be introduced as follows.

Definition 1.1. The equilibrium solution; = 0 of the stochastic differential equation
(1) isasymptotically stable in probability if, and only if, for anys > 0 ande > O,

lim P (suqxts’x| > s) =0
x—0

s<t

and

P( lim |x2*| = 0) =1
t—-+o0
foranyx € R".

Denote byl the infinitesimal generator of the stochastic process solutiaf the
stochastic differential equation (1), that ls,is the second-order differential operator
defined for any functiow in C2(R"; R) by

N 0 LNe L 02
LW(x) = ; f 007500 + ziglaj(x)m(x), )

whereai; (X) = Y1 G, (0gk(x), L<i, j <n.
Then, by means of martingale theory arguments, the following version of the Lya-
punov theorem can be proved.

Theorem 1.2 (see [5]). Assume that there exists a Lyapunov function V definéf'on
(i.e., a functional V in G(R"; R) which is proper and positive definjtsuch that

LV(X) <0

for any x e R™\{0}. Then the equilibrium solution, x= 0 of the stochastic differential
equation(1) is asymptotically stable in probability

For a detailed proof of Theorem 1.2 we refer the reader to Chapter V, pp. 156-171,
of [5].
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1.2. The Stochastic Artstein Theorem

Consider the stochastic process solutipa R" of the multi-input stochastic differential
system written in the sense o0blt”

t t
Xt =XO+/ (f(Xs)+h(Xs)u)dS+/ g(Xs) dws, 3
0 0

where

1. Xp is given inR",

2. uis a measurabl&P-valued control law,

3. f andg are functionals defined as in the previous section,

4. his a functional mappin@®" into R"*P, vanishing in the origin, and such that,
foranyx € R",

h(x)| < K(1+ [x]).

The stochastic differential system (3)dsymptotically stabilizable in probability if
there exists a functiok mappingR" in RP, vanishing in the origin, and such that the
equilibrium solutionx; = 0 of the closed-loop system

t t
Xt =X+ / (f(Xs) + h(xs)k(xs)) ds+ / 0(Xs) dws 4)
0 0

is asymptotically stable in probability.
Then the concept of a control Lyapunov function for the stochastic differential
system (3) can be introduced as follows.

Definition 1.3.  ALyapunov functiorV defined orR" is said to be aontrol Lyapunov
function for the stochastic differential system (3) if for everyn R™\ {0} the following
condition holds:

N\ :
dYohlo—x =0 i=1...p = LVX <O
=0 3Xj

A control Lyapunov functiorVV associated with the stochastic differential system
(3) is said to satisfy themall control property if, for everye > 0, there exists > 0
such that ifx € R"\{0} satisfies||x|| < &, then there exists a contralin RP with
[lu]| < & such that

p n
. oV .
LV (x) + h! () —()u' < 0. 5
) i;,;'()axj() (5)
Then the stochastic version of Artstein’s theorem asserts the following result.

Theorem 1.4 (see [2]). If V is a control Lyapunov function for the stochastic differ-

ential systen{3) which satisfies the small control propertizen the state feedback law
u defined oR" by

u(x) =k (LV(X), VV ()h())(VV (x)h(x)*, (6)
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wherg for any (a, b) in R?,

a++a?+b? b0
_arvarrhor =0,

k@b)=1 bl+/1¥b) (7)
0 if b=0,

renders the stochastic differential systé3hasymptotically stable in probability

2. Setting of the Problem

The purpose of this section is to introduce the class of control stochastic differential
systems with unknown constant parameter we are dealing with in this paper.

Denote byx; € R" the stochastic process solution of the stochastic differential
system written in the sense o0blt™

t t
Xt = Xo +/ (f(Xs) + F(%s)0 + h(xs)u)ds+/ g(Xs) dws, (8)
0 0

where

1. Xp is given inR",

2. uis a measurable real-valued control law,

3. 6 is a constantinknown parameter with values iR9,

4. f,g,andh are functionals satisfying the hypothesis given in the previous section,

5. F is a function mappindR" in R"*9, vanishing in the origin, and such that, for
everyx € R",

IFOOI = K@+ [x]).

The stochastic differential system (8) is said t@daptively stabilizable in probability
if there exists a function(x, ) smooth onR™\{0}) x RY with (0, §) = 0, a smooth
functionalz (x, ), and a positive definite symmetric matiixn Mg.q(R) such that the
dynamic control law

u=ua(x,0), 9
6 =T 1(x,0) (10)

renders the equilibrium solution of the stochatic differential system (3) asymptotically
stable in probability for any value of the parametes RY.

In the following we substitute the problem of the adaptive stabilization of (8) by a
problem of asymptotic feedback stabilization in probability of a modified system. With
this aim, we introduce the notion of an adaptive control Lyapunov function as follows.

Definition 2.1. A functionV, in C?(R" x RY, R), positive definite and proper for
each value of, is said to be aadaptive control Lyapunov function for the stochastic
differential system (8) if there exists a positive definite symmetric m&tiixM g q(R)
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such that, for every in RY, V,(x, 0) is a control Lyapunov function for the stochastic
differential system

t *
Xt = Xo +/ <f(xs) + F(Xs) <9 +T (Eja—\éa(xs, 9)) ) + h(xs)u> ds
0

t
+/ g(Xs)dws- (11)
0

3. Adaptive Stabilization in Probability

The purpose of this section is to design an adaptive stabilizing feedback law for the
stochastic differential system (8) when an adaptive control Lyapunov function is known.

Theorem 3.1. The following two assertions are equivalent

(1) There exists a tripléx, Va, I') such that u= « (X, #) asymptotically stabilizes
in probability the stochastic differential systéd) for everyd in R? with the
Lyapunov function MX, 6).

(2) There exists an adaptive control Lyapunov functiqiixy9) for the stochastic
differential systen(8).

Proof of Theoren8.1. (1) Sincau = (X, #) asymptotically stabilizes in probability
the stochastic differential system (11), there exists a fundfibm C(R" x RY, R),
positive definite inx for everyd € RY, such that

LoVa(X, 0) < —W(X, 6), (12)

where L, is the infinitesimal generator of the closed-loop system deduced from (11)
whenu = a(X, 9).

ThenV,(X, 0) is a control Lyapunov function for the stochastic differential system
(11) for every® € RY, and, consequently, it is an adaptive control Lyapunov function
for the stochastic differential system (8).

(2) If Va(x, 6) is an adaptive control Lyapunov function for the stochastic differential
system (8) itis, according to Definition 2.1, a control Lyapunov function for the stochastic
differential system (11).

Therefore, the control law

(X, 6) =k (LgVa(X, 6), (VxVa(X, )N(X))%) VyVa(x, H)h(X), 13)

wherex is given by (7) and_g, the infinitesimal generator of the uncontrolled part of the
stochastic differential system (11), is, according to Theorem 1.4, a smooth control law
on (R™\{0}) x R which renders the equilibrium solution of the stochastic differential
system (11) asymptotically stable in probability for evérg R9.

Furthermore, note thatthe feedback lawt « (X, 6) given by (13) will be continuous
atx = 0 if, and only if, the adaptive control Lyapunov functidf satisfies the small
control property.

This completes the proof of Theorem 3.1. O
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Proposition 3.2. Ifthere exists an adaptive control Lyapunov function for the stochastic
differential systeng8), then this stochastic differential system is adaptively stabilizable
in probability.

Proof of Propositior8.2. Assume that there exists an adaptive control Lyapunov func-
tion for the stochastic differential system (8). Then, according to Theorem 3.1, there
exists a triple(«, V,, I') and a continuous functiow/ which is positive definite i for
every® € RY such that

LoVa(x, 0) < —W(X, 0),

where L, is the infinitesimal generator of the closed-loop system deduced from (11)
whenu = a(Xx, 0).
LetV be the Lyapunov function defined @& x RY by

V(x,0) = Va(x,0) + 16 — "1~ - 0). (14)

Denoting byL the infinitesimal generator of the stochastic proc(exssét), the solution
of (8)—(10) yields

A A V, A V, A * V, A A
LV (X, 0) = L;Va(x, ) — a—f(x,@)F<E(x,6)F(x)> 40 2(X, )T T(X, )
a0 ax a0
N Z \Y A * . .
+(0 —0) <W(X’ 9)F(X)> — (0 —0)"t(X,0). (15)
Therefore, choosing
A V A *
(x,6) = (Eme)F(x)) : (16)
aX
one has

LV (X, 0) < —W(X, 8)

for everyfd € R9.

Hence, the equilibrium solutiofx, §) = (0, 6) of the stochastic differential system
(8)—(10) is stable in probability and by means of the stochastic version of La Salle’s
theorem (see [8]) one can prove thattends in probability to zero (see the proof of
Theorem 3.7 in [3], for example); that is, the equilibrium solution of the stochastic
differential system (8) is adaptively stabilizable in probability.

This completes the proof of Proposition 3.2. O

The control lawu = « (X, 0) given by (13) renders the stochastic differential system
(11) asymptotically stable in probability but it may not be a stabilizer for the original
stochastic differential system (8). However, as is shown in the proof of Proposition 3.2,

the feedback law = «(x, §) given by (13) and the update lav= 't (x, §) with (16)
is an adaptive stabilizing feedback law for the stochastic differential system (8).
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The Lyapunov functioriv defined by (14) used in the proof of Theorem 3.1 is
quadratic in the parameter err- 4. This form is suggested by the linear dependence
of the stochastic differential system (8) on the parametand the fact tha# cannot be
used for feedback.

In the following we prove that the quadratic form of the Lyapunov function (14) is
necessary and sufficient for the existence of an adaptive control Lyapunov function.

Definition 3.3. The stochastic differential system (8 idaptively quadratically sta-
bilizable in probability if it is adaptively stabilizable in probability and there exists
a functionV, in C?(R" x RY; R), positive definite and proper ix for each value of

0 € RY, and a functioWV in C(R" x RY; R), positive definite inx for everyd € RY,
such that, for every € R9Y,

LV (X,0) < —W(x, 0),

where/ is the infinitesimal generator of the stochastic process solution of (8)—(10) and
V is the Lyapunov function given by (14).

Then, the following result on adaptive quadratic stability in probability can be
proved.

Corollary 3.4. The stochastic differential systdB) is adaptively quadratically stabi-
lizable in probability if and only if there exists an adaptive control Lyapunov function

Proof of Corollary3.4. The necessary part of the result is contained in the proof of
Proposition 3.2.

We assume, now, that the stochastic differential system (8) is adaptively quadratically
stabilizable in probability and prove first thatx, ) must be given by (16).

For any(x, §) € R" x RY, equality (15) can be rewritten as

R Va4 Va o~ *
LV (X, 0) = L;Va(x, 6) — Na (x. dyr (E(x, G)F(X)>
30 dx

NVa - e (Va5 ) j
+—= (X, 0)I't(x,0) — 6* <<—(x, 9)F(x)> - r(x,9))

90 aX
+9*<<Z—\f(x,é)F(x)> —r(x,é)>- 17

Then, for the stochastic differential equation (8) to be adaptively quadratically stabiliz-
able in probability, this expression has to be nonpositive. Therefore, since the right-hand
side of equality (17) is affine i, it is nonpositive for everx € R" andé, § € R only

if the last term is zero; that is, if

R Va  » *
(X, 0) = <8_x(x’ Q)F(x)) .
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Furthermore, in this case, it can be easily deduced from Theorem 3\ ilxab) is an
adaptive control Lyapunov function for the stochastic differential equation (8).
This completes the proof of Corollary 3.4. O

4. A Backstepping Lemma

The purpose of this section is to extend the adaptive backstepping design with tun-
ing function proved in [6] to the class of stochastic differential systems introduced in
Section 2.

An adaptive control Lyapunov function for a higher-order system can be deduced
by means of backstepping from an adaptive control Lyapunov function for a lower-order
system.

Proposition 4.1. If the stochastic differential syste(8) is adaptively quadratically
stabilizable in probability withw in C?(R" x RY; R), then the augmented system

t t
X = xO+/ (f(xs) + F(X)0 + h(xs)S)dSJr/ 9(Xs) dws, (18)
. 0 0
£=u

is also adaptively quadratically stabilizable in probability

Proof of Propositio.1. Since the stochastic differential system (8) is adaptively qua-
dratically stabilizable in probability one can deduce from Corollary 3.4 that there exists an
adaptive control Lyapunov functiow, (x, 6) which satisfies, according to Theorem 3.1,
inequality (12) with a control lawm = «a(x, 0).

In the following we prove that the Lyapunov functidh, defined orR" x R x RY
by

Vi(X, £, 6) = Va(x, 0) + (5 — a(x,0)*, (19)
is an adaptive control Lyapunov function for the stochastic differential system (18) by
showing that it is a control Lyapunov function for the stochastic differential system

d<Xt> _ (f (%) + F(X) (0 + T'((0V1/30)(X, &, 0))*) + h(X)é& dt

&) 0

0
+(1)u dt+ <g((>)<t)> du. (20)

With (19) one has
0
VV]_(X,E,Q)(]_) =0 = f ZOZ(X,Q).

On the other hand, denoting l4 the infinitesimal generator of the uncontrolled part
of the stochastic differential system (20) yields

L1Vi(X, &, 0)lz—g(x.0) = LoVa(X, 0),
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where L, is the infinitesimal generator of the closed-loop system deduced from (11)
whenu = a(X, 6).

Therefore, sinc¥,(x, 0) is an adaptive control Lyapunov function for the stochastic
differential system (8), one has

LoVa(X,0) <0

for everyd € R9.

Hence, according to Definition 1.8; is a control Lyapunov function for the stochas-
tic differential system (20). Then, according to Theorem ¥,lis an adaptive control
Lyapunov function for the stochastic system (18) and by Corollary 3.4 this system is
adaptively quadratically stabilizable in probability.

This completes the proof of Proposition 4.1. O

The tuning function associated with the stochastic differential system (18) is defined
forany(x, &,0) e R" x R x RY by

BAVA F(x) *
”(X’S’Q)Z(aa s>(x’$’9)< 0 ))

(2w, 0) = € —ax, 0?22 x,0) ) Fix '
_<(8X(’) (& “(’))ax(’)) ())

8 *
=7(x,0) — (%(x,emx)) (& —a(x, 0)°

wherert is the tuning function associated with the stochastic differential system (8).

5. A Design Example

Let xo be given inR3 and denote by; € R? the solution of the stochastic differential
system written in the sense 0blt”

X2t ©(X1,t) 0 0
dx = [ X3¢ | dt + 0 odt+|O0|udt] O |duw, (21)
0 0 1 X1t

whereg is a smooth functional defined dd andw is a standard real-valued Wiener
process.

Note that (21) is deduced from the “benchmark” example exposed in [6] by adding
a “noisy term” in the equation defining the third component of the system.

Introduce the stochastic processe R® defined by

X1t
7z = | X2t — a1(Xyt, 6) ,
X3t — aa(Xyt, Xat, 6)
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where the stabilizing functions;, a, and the state feedback control law are
R 3 A
a1(Xg, 0) = —3X1 — 0p(X1),

1 32051 2

(X1, X2, 0) = —2 z+aal(x —1—67)—1—80[1 + X
a(Xg, X2, 0) = —25 — —. — T+ = —=X],
2 72 2T AT xR ¢ 90 279 x? !

o A o oo
U= -2 —Z3+ —2.(x+0p) + —Xa + —213
0X1 0X2 90

30[1 30[2 1320[1)(2 132012 2
290 ax” 2 T 2 L

and the tuning functions and the update lawéare given by

z z 80{1 z 30!2
T = s To = T1 — —Q, Ty = To — —Q,
1 19 2 1 28X1§0 3 2 38X1<P
and

dé 2 2 80[1 2 80[2

— = T3 = — _— — —qQ.

dt 3 19 28X1§0 33X1¢

Then, by using the Lyapunov functioh defined orR® x R by
V(z.0) = 3|zI>+ 30 — 0)°,
one can prove easily that the equilibrium solution of the stochastic differential system

—%Zl-i-zz
dz = | —z1 — 2o + 23 + (d1/30) (der2/3X0) Z39(z1) | dt
~2 — 73 — (3t1/30) (dor2/ 9%1) 229 (21)
(z1) R 0
+ | —@a1/dx0)e(z1) | 0 —6)dt+ [ 0 | duy
—(dar2/0X1)@(Z1) 2

is asymptotically stable in probability.
Therefore, the stochastic differential system (21) is adaptively asymptotically sta-
bilizable in probability.

6. Conclusions
The problem of adaptive stabilization in probability is difficult because the functional

V, used in our framework, which modifies the stochastic differential system (3), has to
be its own Lyapunov function.
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The discussion developed above extends also for stochastic differential systems in

the form

t t
Xt = Xo +/ (f(Xs) + F(Xs)0 + (h(Xs) + H(Xs)0) u)ds+/ 0(Xs) dws.
0 0

In this case, the existence of an adaptive control Lyapunov fun¥tias equivalent to
the existence of a control Lyapunov function for the stochastic differential system

t 8Va *
xt=xo+/ <f(xs)+F(xs) <9+F(—(xs,9)> )
0 00

+ (h(xs) + H(xs) [6‘ +T <83—\2a(x5, 9)) D u> ds

t
+/0 g(Xs)dws-

The extension to the case of multi-input stochastic differential systems is straightforward.
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