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Abstract. The purpose of this paper is to study the problem of asymptotic sta-
bilization in probability of nonlinear stochastic differential systems with unknown
parameters. With this aim, we introduce the concept of an adaptive control Lyapunov
function for stochastic systems and we use the stochastic version of Artstein’s the-
orem to design an adaptive stabilizer. In this framework the problem of adaptive
stabilization of a nonlinear stochastic system is reduced to the problem of asymp-
totic stabilization in probability of a modified system. The design of an adaptive
control Lyapunov function is illustrated by the example of adaptively quadratically
stabilizable in probability stochastic differential systems.
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Introduction

The aim of this paper is to study the problem of asymptotic feedback stabilization
in probability of nonlinear stochastic differential systems with an unknown constant
parameter in the drift. Since in general this problem is not solvable by means of static
feedback laws we introduce the concept of an adaptive control Lyapunov function and we
use the stochastic version of Artstein’s theorem established in [2] to design an adaptive
stabilizer. In our framework the problem of adaptive stabilization of nonlinear stochastic
differential systems is reduced to the problem of dynamic feedback stabilization, for all
values of the unknown parameter, of a modified system.

The concept of a control Lyapunov function for stochastic differential systems has
been introduced in [2] in order to prove a stochastic version of Artstein’s theorem [1]
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(see also [9]). The asymptotic stability in probability of affine in the control nonlinear
stochastic differential systems which can be characterized in terms of computable control
Lyapunov functions which depend on the system coefficients has been studied in [4].

In [3] necessary and sufficient conditions for asymptotic feedback stability of
stochastic differential systems are of Lyapunov-type. The stabilizers computed in this
paper are smooth except possibly at their equilibrium state and their construction is based
on the knowledge of a control Lyapunov function.

The concept of an adaptive control Lyapunov function associated with deterministic
nonlinear systems with unknown parameters has been introduced by Krsti´c and Koko-
tović in [7]. In this paper we extend to nonlinear stochastic differential systems with
unknown parameters the results proved for deterministic systems in [7]. The main tools
used in the following are the stochastic Lyapunov machinery developed by Khasminskii
[5] and the stochastic Artstein theorem established in [2].

This paper is divided into five sections organized as follows. In Section 1 we recall
some definitions and results concerning the asymptotic stability in probability of the
equilibrium solution of a stochastic differential equation proved by Khasminskii [5] and
we recall the stochastic version of Artstein’s theorem proved in [2]. In Section 2 we
introduce the class of stochastic differential systems with unknown constant parameters
we are dealing with in this paper. In Section 3 we state and prove the main result of
the paper on the feedback stabilization of the class of stochastic differential systems
introduced in the previous section. In Section 4 we illustrate the construction of an
adaptive control Lyapunov function by proving a backstepping lemma and in Section 5
we design an example deduced from the “benchmark” model exposed in [6].

1. Stochastic Stability

The purpose of this section is to recall the main results concerning the asymptotic stability
in probability of the equilibrium solution of a stochastic differential equation that we need
in what follows as well as the stochastic version of Artstein’s theorem. For a complete
presentation of stochastic stability theory and stochastic Lyapunov machinery we refer
the reader to the book by Khasminskii [5], for example.

1.1. Asymptotic Stability in Probability

Let(Ä,F , P)be a complete probability space and denote byw = {wt ; t ≥ 0}a standard
Rm-valued Wiener process defined on this space.

Consider the stochastic process solutionxt ∈ Rn of the stochastic differential equa-
tion written in the sense of Itˆo:

xt = x0+
∫ t

0
f (xs) ds+

∫ t

0
g(xs) dws, (1)

where

1. x0 is given inRn,
2. f andg are functionals mappingRn intoRn andRn×m, respectively, vanishing

in the origin, and such that there exists a nonnegative constantK such that, for
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anyx ∈ Rn,

| f (x)| + |g(x)| ≤ K (1+ |x|).

If, for any s ≥ 0 andx ∈ Rn, xs,x
t , t ≥ s, denotes the solution at timet of the stochastic

differential equation (1) starting from the statex at times, the notion of asymptotic
stability in probability for the equilibrium solution of the stochastic differential equation
(1) can be introduced as follows.

Definition 1.1. The equilibrium solutionxt ≡ 0 of the stochastic differential equation
(1) isasymptotically stable in probability if, and only if, for anys ≥ 0 andε > 0,

lim
x→0

P

(
sup
s≤t
|xs,x

t | > ε

)
= 0

and

P

(
lim

t→+∞|x
s,x
t | = 0

)
= 1

for anyx ∈ Rn.

Denote byL the infinitesimal generator of the stochastic process solutionxt of the
stochastic differential equation (1), that is,L is the second-order differential operator
defined for any function9 in C2(Rn;R) by

L9(x) =
n∑

i=1

f i (x)
∂9

∂xi
(x)+ 1

2

n∑
i, j=1

ai j (x)
∂29

∂xi ∂xj
(x), (2)

whereai j (x) =
∑m

k=1 gi
k(x)g

j
k (x), 1≤ i, j ≤ n.

Then, by means of martingale theory arguments, the following version of the Lya-
punov theorem can be proved.

Theorem 1.2 (see [5]). Assume that there exists a Lyapunov function V defined onRn

(i.e., a functional V in C2(Rn;R) which is proper and positive definite) such that

LV(x) < 0

for any x∈ Rn\{0}. Then the equilibrium solution xt ≡ 0 of the stochastic differential
equation(1) is asymptotically stable in probability.

For a detailed proof of Theorem 1.2 we refer the reader to Chapter V, pp. 156–171,
of [5].
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1.2. The Stochastic Artstein Theorem

Consider the stochastic process solutionxt ∈ Rn of the multi-input stochastic differential
system written in the sense of Itˆo:

xt = x0+
∫ t

0
( f (xs)+ h(xs)u) ds+

∫ t

0
g(xs) dws, (3)

where

1. x0 is given inRn,
2. u is a measurableRp-valued control law,
3. f andg are functionals defined as in the previous section,
4. h is a functional mappingRn into Rn×p, vanishing in the origin, and such that,

for anyx ∈ Rn,

|h(x)| ≤ K (1+ |x|).
The stochastic differential system (3) isasymptotically stabilizable in probability if
there exists a functionk mappingRn in Rp, vanishing in the origin, and such that the
equilibrium solutionxt ≡ 0 of the closed-loop system

xt = x +
∫ t

0
( f (xs)+ h(xs)k(xs)) ds+

∫ t

0
g(xs) dws (4)

is asymptotically stable in probability.
Then the concept of a control Lyapunov function for the stochastic differential

system (3) can be introduced as follows.

Definition 1.3. A Lyapunov functionV defined onRn is said to be acontrol Lyapunov
function for the stochastic differential system (3) if for everyx in Rn\{0} the following
condition holds:

n∑
j=0

h j
i (x)

∂V

∂xj
(x) = 0, i = 1, . . . , p ⇒ LV(x) < 0.

A control Lyapunov functionV associated with the stochastic differential system
(3) is said to satisfy thesmall control property if, for everyε > 0, there existsδ > 0
such that ifx ∈ Rn\{0} satisfies||x|| < δ, then there exists a controlu in Rp with
||u|| < ε such that

LV(x)+
p∑

i=1

n∑
j=1

h j
i (x)

∂V

∂xj
(x)ui < 0. (5)

Then the stochastic version of Artstein’s theorem asserts the following result.

Theorem 1.4 (see [2]). If V is a control Lyapunov function for the stochastic differ-
ential system(3) which satisfies the small control property, then the state feedback law
u defined onRn by

u(x) = κ(LV(x),∇V(x)h(x))(∇V(x)h(x))?, (6)
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where, for any(a, b) in R2,

κ(a, b) =

−
a+√a2+ b2

b(1+√1+ b)
if b > 0,

0 if b = 0,
(7)

renders the stochastic differential system(3) asymptotically stable in probability.

2. Setting of the Problem

The purpose of this section is to introduce the class of control stochastic differential
systems with unknown constant parameter we are dealing with in this paper.

Denote byxt ∈ Rn the stochastic process solution of the stochastic differential
system written in the sense of Itˆo:

xt = x0+
∫ t

0
( f (xs)+ F(xs)θ + h(xs)u) ds+

∫ t

0
g(xs) dws, (8)

where

1. x0 is given inRn,
2. u is a measurable real-valued control law,
3. θ is a constantunknown parameter with values inRq,
4. f , g, andh are functionals satisfying the hypothesis given in the previous section,
5. F is a function mappingRn in Rn×q, vanishing in the origin, and such that, for

everyx ∈ Rn,

|F(x)| ≤ K (1+ |x|).
The stochastic differential system (8) is said to beadaptively stabilizable in probability
if there exists a functionα(x, θ̂ ) smooth on(Rn\{0})× Rq with α(0, θ̂ ) ≡ 0, a smooth
functionalτ(x, θ̂ ), and a positive definite symmetric matrix0 inMq×q(R) such that the
dynamic control law

u = α(x, θ̂ ), (9)

˙̂
θ = 0 τ(x, θ̂ ) (10)

renders the equilibrium solution of the stochatic differential system (3) asymptotically
stable in probability for any value of the parameterθ ∈ Rq.

In the following we substitute the problem of the adaptive stabilization of (8) by a
problem of asymptotic feedback stabilization in probability of a modified system. With
this aim, we introduce the notion of an adaptive control Lyapunov function as follows.

Definition 2.1. A functionVa in C2(Rn×Rq,R), positive definite and proper inx for
each value ofθ , is said to be anadaptive control Lyapunov function for the stochastic
differential system (8) if there exists a positive definite symmetric matrix0 inMq×q(R)
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such that, for everyθ in Rq, Va(x, θ) is a control Lyapunov function for the stochastic
differential system

xt = x0+
∫ t

0

(
f (xs)+ F(xs)

(
θ + 0

(
∂Va

∂θ
(xs, θ)

)?)
+ h(xs)u

)
ds

+
∫ t

0
g(xs) dws. (11)

3. Adaptive Stabilization in Probability

The purpose of this section is to design an adaptive stabilizing feedback law for the
stochastic differential system (8) when an adaptive control Lyapunov function is known.

Theorem 3.1. The following two assertions are equivalent:

(1) There exists a triple(α,Va, 0) such that u= α(x, θ) asymptotically stabilizes
in probability the stochastic differential system(11) for everyθ in Rq with the
Lyapunov function Va(x, θ).

(2) There exists an adaptive control Lyapunov function Va(x, θ) for the stochastic
differential system(8).

Proof of Theorem3.1. (1) Sinceu = α(x, θ) asymptotically stabilizes in probability
the stochastic differential system (11), there exists a functionW in C(Rn × Rq,R),
positive definite inx for everyθ ∈ Rq, such that

LθVa(x, θ) ≤ −W(x, θ), (12)

whereLθ is the infinitesimal generator of the closed-loop system deduced from (11)
whenu = α(x, θ).

ThenVa(x, θ) is a control Lyapunov function for the stochastic differential system
(11) for everyθ ∈ Rq, and, consequently, it is an adaptive control Lyapunov function
for the stochastic differential system (8).

(2) If Va(x, θ) is an adaptive control Lyapunov function for the stochastic differential
system (8) it is, according to Definition 2.1, a control Lyapunov function for the stochastic
differential system (11).

Therefore, the control law

α(x, θ) = κ(LθVa(x, θ), (∇xVa(x, θ)h(x))
2)∇xVa(x, θ)h(x), (13)

whereκ is given by (7) andLθ , the infinitesimal generator of the uncontrolled part of the
stochastic differential system (11), is, according to Theorem 1.4, a smooth control law
on (Rn\{0}) × R which renders the equilibrium solution of the stochastic differential
system (11) asymptotically stable in probability for everyθ ∈ Rq.

Furthermore, note that the feedback lawu = α(x, θ)given by (13) will be continuous
at x = 0 if, and only if, the adaptive control Lyapunov functionVa satisfies the small
control property.

This completes the proof of Theorem 3.1.
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Proposition 3.2. If there exists an adaptive control Lyapunov function for the stochastic
differential system(8), then this stochastic differential system is adaptively stabilizable
in probability.

Proof of Proposition3.2. Assume that there exists an adaptive control Lyapunov func-
tion for the stochastic differential system (8). Then, according to Theorem 3.1, there
exists a triple(α,Va, 0) and a continuous functionW which is positive definite inx for
everyθ ∈ Rq such that

LθVa(x, θ) ≤ −W(x, θ),

whereLθ is the infinitesimal generator of the closed-loop system deduced from (11)
whenu = α(x, θ).

Let V be the Lyapunov function defined onRn × Rq by

V(x, θ̂ ) = Va(x, θ̂ )+ 1
2(θ − θ̂ )?0−1(θ − θ̂ ). (14)

Denoting byL the infinitesimal generator of the stochastic process(xt , θ̂t ), the solution
of (8)–(10) yields

LV(x, θ̂ ) = Lθ̂Va(x, θ̂ )− ∂Va

∂θ̂
(x, θ̂ )0

(
∂Va

∂x
(x, θ̂ )F(x)

)?
+ ∂Va

∂θ̂
(x, θ̂ )0τ(x, θ̂ )

+ (θ − θ̂ )?
(
∂Va

∂x
(x, θ̂ )F(x)

)?
− (θ − θ̂ )?τ (x, θ̂ ). (15)

Therefore, choosing

τ(x, θ̂ ) =
(
∂Va

∂x
(x, θ̂ )F(x)

)?
, (16)

one has

LV(x, θ̂ ) ≤ −W(x, θ̂ )

for everyθ ∈ Rq.
Hence, the equilibrium solution(x, θ̂ ) ≡ (0, θ) of the stochastic differential system

(8)–(10) is stable in probability and by means of the stochastic version of La Salle’s
theorem (see [8]) one can prove thatxt tends in probability to zero (see the proof of
Theorem 3.7 in [3], for example); that is, the equilibrium solution of the stochastic
differential system (8) is adaptively stabilizable in probability.

This completes the proof of Proposition 3.2.

The control lawu = α(x, θ) given by (13) renders the stochastic differential system
(11) asymptotically stable in probability but it may not be a stabilizer for the original
stochastic differential system (8). However, as is shown in the proof of Proposition 3.2,

the feedback lawu = α(x, θ̂ ) given by (13) and the update laŵ̇θ = 0τ(x, θ̂ ) with (16)
is an adaptive stabilizing feedback law for the stochastic differential system (8).
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The Lyapunov functionV defined by (14) used in the proof of Theorem 3.1 is
quadratic in the parameter errorθ − θ̂ . This form is suggested by the linear dependence
of the stochastic differential system (8) on the parameterθ and the fact thatθ cannot be
used for feedback.

In the following we prove that the quadratic form of the Lyapunov function (14) is
necessary and sufficient for the existence of an adaptive control Lyapunov function.

Definition 3.3. The stochastic differential system (8) isadaptively quadratically sta-
bilizable in probability if it is adaptively stabilizable in probability and there exists
a functionVa in C2(Rn × Rq;R), positive definite and proper inx for each value of
θ ∈ Rq, and a functionW in C(Rn × Rq;R), positive definite inx for everyθ ∈ Rq,
such that, for everyθ ∈ Rq,

LV(x, θ̂ ) ≤ −W(x, θ̂ ),

whereL is the infinitesimal generator of the stochastic process solution of (8)–(10) and
V is the Lyapunov function given by (14).

Then, the following result on adaptive quadratic stability in probability can be
proved.

Corollary 3.4. The stochastic differential system(8) is adaptively quadratically stabi-
lizable in probability if, and only if, there exists an adaptive control Lyapunov function.

Proof of Corollary3.4. The necessary part of the result is contained in the proof of
Proposition 3.2.

We assume, now, that the stochastic differential system (8) is adaptively quadratically
stabilizable in probability and prove first thatτ(x, θ̂ ) must be given by (16).

For any(x, θ̂ ) ∈ Rn × Rq, equality (15) can be rewritten as

LV(x, θ̂ ) = Lθ̂Va(x, θ̂ )− ∂Va

∂θ̂
(x, θ̂ )0

(
∂Va

∂x
(x, θ̂ )F(x)

)?
+ ∂Va

∂θ̂
(x, θ̂ )0τ(x, θ̂ )− θ̂ ?

((
∂Va

∂x
(x, θ̂ )F(x)

)?
− τ(x, θ̂ )

)
+ θ?

((
∂Va

∂x
(x, θ̂ )F(x)

)?
− τ(x, θ̂ )

)
. (17)

Then, for the stochastic differential equation (8) to be adaptively quadratically stabiliz-
able in probability, this expression has to be nonpositive. Therefore, since the right-hand
side of equality (17) is affine inθ , it is nonpositive for everyx ∈ Rn andθ , θ̂ ∈ Rq only
if the last term is zero; that is, if

τ(x, θ̂ ) =
(
∂Va

∂x
(x, θ̂ )F(x)

)?
.
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Furthermore, in this case, it can be easily deduced from Theorem 3.1 thatVa(x, θ) is an
adaptive control Lyapunov function for the stochastic differential equation (8).

This completes the proof of Corollary 3.4.

4. A Backstepping Lemma

The purpose of this section is to extend the adaptive backstepping design with tun-
ing function proved in [6] to the class of stochastic differential systems introduced in
Section 2.

An adaptive control Lyapunov function for a higher-order system can be deduced
by means of backstepping from an adaptive control Lyapunov function for a lower-order
system.

Proposition 4.1. If the stochastic differential system(8) is adaptively quadratically
stabilizable in probability withα in C2(Rn × Rq;R), then the augmented systemxt = x0+

∫ t

0
( f (xs)+ F(xs)θ + h(xs)ξ) ds+

∫ t

0
g(xs) dws,

ξ̇ = u
(18)

is also adaptively quadratically stabilizable in probability.

Proof of Proposition4.1. Since the stochastic differential system (8) is adaptively qua-
dratically stabilizable in probability one can deduce from Corollary 3.4 that there exists an
adaptive control Lyapunov functionVa(x, θ) which satisfies, according to Theorem 3.1,
inequality (12) with a control lawu = α(x, θ).

In the following we prove that the Lyapunov functionV1, defined onRn ×R×Rq

by

V1(x, ξ, θ) = Va(x, θ)+ 1
4(ξ − α(x, θ))4, (19)

is an adaptive control Lyapunov function for the stochastic differential system (18) by
showing that it is a control Lyapunov function for the stochastic differential system

d

(
xt

ξt

)
=
(

f (xt )+ F(xt )(θ + 0((∂V1/∂θ)(x, ξ, θ))?)+ h(xt )ξt

0

)
dt

+
(

0

1

)
u dt+

(
g(xt )

0

)
dwt . (20)

With (19) one has

∇V1(x, ξ, θ)

(
0

1

)
= 0 ⇒ ξ = α(x, θ).

On the other hand, denoting byL1 the infinitesimal generator of the uncontrolled part
of the stochastic differential system (20) yields

L1V1(x, ξ, θ)|ξ=α(x,θ) = LθVa(x, θ),
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whereLθ is the infinitesimal generator of the closed-loop system deduced from (11)
whenu = α(x, θ).

Therefore, sinceVa(x, θ) is an adaptive control Lyapunov function for the stochastic
differential system (8), one has

LθVa(x, θ) < 0

for everyθ ∈ Rq.
Hence, according to Definition 1.3,V1 is a control Lyapunov function for the stochas-

tic differential system (20). Then, according to Theorem 3.1,V1 is an adaptive control
Lyapunov function for the stochastic system (18) and by Corollary 3.4 this system is
adaptively quadratically stabilizable in probability.

This completes the proof of Proposition 4.1.

The tuning function associated with the stochastic differential system (18) is defined
for any(x, ξ, θ) ∈ Rn × R× Rq by

τ1(x, ξ, θ) =
(

∂V1

∂(x, ξ)
(x, ξ, θ)

(
F(x)

0

))?
=
((

∂Va

∂x
(x, θ)− (ξ − α(x, θ))3∂α

∂x
(x, θ)

)
F(x)

)?
= τ(x, θ)−

(
∂α

∂x
(x, θ)F(x)

)?
(ξ − α(x, θ))3,

whereτ is the tuning function associated with the stochastic differential system (8).

5. A Design Example

Let x0 be given inR3 and denote byxt ∈ R3 the solution of the stochastic differential
system written in the sense of Itˆo:

dxt =
x2,t

x3,t

0

 dt +
ϕ(x1,t )

0
0

 θ dt +
0

0
1

 u dt

 0
0

x1,t

 dwt , (21)

whereϕ is a smooth functional defined onR andw is a standard real-valued Wiener
process.

Note that (21) is deduced from the “benchmark” example exposed in [6] by adding
a “noisy term” in the equation defining the third component of the system.

Introduce the stochastic processzt ∈ R3 defined by

zt =
x1,t

x2,t − α1(x1,t , θ̂t )

x3,t − α2(x1,t , x2,t , θ̂t )

 ,
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where the stabilizing functionsα1, α2 and the state feedback control law are

α1(x1, θ̂ ) = − 3
2x1− θ̂ϕ(x1),

α2(x1, x2, θ̂ ) = −z2− z1+ ∂α1

∂x1
.(x2+ θ̂ϕ)+ ∂α1

∂θ̂
τ2+ 1

2

∂2α1

∂x2
1

x2
1,

u = −z2− z3+ ∂α2

∂x1
.(x2+ θ̂ϕ)+ ∂α2

∂x2
x3+ ∂α2

∂θ̂
τ3

−z2
∂α1

∂θ̂

∂α2

∂x1
ϕ + 1

2

∂2α1

∂x2
1

x2
1 +

1

2

∂2α2

∂x2
2

x2
1,

and the tuning functions and the update law forθ̂ are given by

τ1 = z1ϕ, τ2 = τ1− z2
∂α1

∂x1
ϕ, τ3 = τ2− z3

∂α2

∂x1
ϕ,

and

dθ̂

dt
= τ3 = z1ϕ − z2

∂α1

∂x1
ϕ − z3

∂α2

∂x1
ϕ.

Then, by using the Lyapunov functionV defined onR3× R by

V(z, θ) = 1
2||z||2+ 1

2(θ − θ̂ )2,

one can prove easily that the equilibrium solution of the stochastic differential system

dzt =
 − 3

2z1+ z2

−z1− z2+ z3+ (∂α1/∂θ̂)(∂α2/∂x1)z3ϕ(z1)

−z2− z3− (∂α1/∂θ̂)(∂α2/∂x1)z2ϕ(z1)

 dt

+
 ϕ(z1)

−(∂α1/∂x1)ϕ(z1)

−(∂α2/∂x1)ϕ(z1)

 (θ − θ̂ ) dt +
 0

0
z1

 dwt

is asymptotically stable in probability.
Therefore, the stochastic differential system (21) is adaptively asymptotically sta-

bilizable in probability.

6. Conclusions

The problem of adaptive stabilization in probability is difficult because the functional
Va used in our framework, which modifies the stochastic differential system (3), has to
be its own Lyapunov function.
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The discussion developed above extends also for stochastic differential systems in
the form

xt = x0+
∫ t

0
( f (xs)+ F(xs)θ + (h(xs)+ H(xs)θ) u) ds+

∫ t

0
g(xs) dws.

In this case, the existence of an adaptive control Lyapunov functionVa is equivalent to
the existence of a control Lyapunov function for the stochastic differential system

xt = x0+
∫ t

0

(
f (xs)+ F(xs)

(
θ + 0

(
∂Va

∂θ
(xs, θ)

)?)
+
(

h(xs)+ H(xs)

[
θ + 0

(
∂Va

∂θ
(xs, θ)

)?])
u

)
ds

+
∫ t

0
g(xs) dws.

The extension to the case of multi-input stochastic differential systems is straightforward.
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7. Krstić M, Kokotović P (1995) Control Lyapunov functions for adaptive nonlinear stabilization. Systems
and Control Letters 26:17–23

8. Kushner H (1967) Converse theorems for stochastic Liapunov functions. SIAM Journal of Control
5(2):228–233

9. Sontag E (1989) A universal construction of Artstein’s theorem on nonlinear stabilization. Systems and
Control Letters 13:117–123

Accepted9 December1996


